Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34344825

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is a common cause of localized respiratory tract disease and results in significant morbidity. The pathogenesis of NTHi disease begins with nasopharyngeal colonization, and therefore, the prevention of colonization represents a strategy to prevent disease. The NTHi HMW1 and HMW2 proteins are a family of conserved adhesins that are present in 75 to 80% of strains and have been demonstrated to play a critical role in colonization of the upper respiratory tract in rhesus macaques. In this study, we examined the vaccine potential of HMW1 and HMW2 using a mouse model of nasopharyngeal colonization. Immunization with HMW1 and HMW2 by either the subcutaneous or the intranasal route resulted in a strain-specific antibody response associated with agglutination of bacteria and restriction of bacterial adherence. Despite the specificity of the antibody response, immunization resulted in protection against colonization by both the parent NTHi strain and heterologous strains expressing distinct HMW1 and HMW2 proteins. Pretreatment with antibody against IL-17A eliminated protection against heterologous strains, indicating that heterologous protection is IL-17A dependent. This work demonstrates the vaccine potential of the HMW1 and HMW2 proteins and highlights the importance of IL-17A in protection against diverse NTHi strains.


Assuntos
Adesinas Bacterianas/imunologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/patogenicidade , Adesinas Bacterianas/genética , Testes de Aglutinação , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Aderência Bacteriana , Feminino , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/prevenção & controle , Haemophilus influenzae/genética , Haemophilus influenzae/imunologia , Imunização , Interleucina-17/sangue , Camundongos Endogâmicos BALB C , Nasofaringe/microbiologia
2.
Genome Med ; 10(1): 70, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30261899

RESUMO

BACKGROUND: Mutation of the IL2RG gene results in a form of severe combined immune deficiency (SCID-X1), which has been treated successfully with hematopoietic stem cell gene therapy. SCID-X1 gene therapy results in reconstitution of the previously lacking T cell compartment, allowing analysis of the roles of T cell immunity in humans by comparing before and after gene correction. METHODS: Here we interrogate T cell reconstitution using four forms of high throughput analysis. (1) Estimation of the numbers of transduced progenitor cells by monitoring unique positions of integration of the therapeutic gene transfer vector. (2) Estimation of T cell population structure by sequencing of the recombined T cell receptor (TCR) beta locus. (3) Metagenomic analysis of microbial populations in oropharyngeal, nasopharyngeal, and gut samples. (4) Metagenomic analysis of viral populations in gut samples. RESULTS: Comparison of progenitor and mature T cell populations allowed estimation of a minimum number of cell divisions needed to generate the observed populations. Analysis of microbial populations showed the effects of immune reconstitution, including normalization of gut microbiota and clearance of viral infections. Metagenomic analysis revealed enrichment of genes for antibiotic resistance in gene-corrected subjects relative to healthy controls, likely a result of higher healthcare exposure. CONCLUSIONS: This multi-omic approach enables the characterization of multiple effects of SCID-X1 gene therapy, including T cell repertoire reconstitution, estimation of numbers of cell divisions between progenitors and daughter T cells, normalization of the microbiome, clearance of microbial pathogens, and modulations in antibiotic resistance gene levels. Together, these results quantify several aspects of the long-term efficacy of gene therapy for SCID-X1. This study includes data from ClinicalTrials.gov numbers NCT01410019, NCT01175239, and NCT01129544.


Assuntos
Terapia Genética , Microbiota , Linfócitos T/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/imunologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia , Divisão Celular , Pré-Escolar , Regiões Determinantes de Complementaridade/genética , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/microbiologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...